Cheat Sheet 1: Sigma Notation

Simon Harris

December 14, 2008

1 Removing a Factor

A simple adjustment which can help reach a situation where $\mathbf{2}$ can be applied:

$$
\sum_{i=1}^{n} 3 i=3 \sum_{i=1}^{n} i
$$

2 Finite Arithmetic Sequences

The sum of a finite arithmetic sequence $1+2+\ldots+n$ can be written in sigma notation as $\sum_{i=1}^{n} i$, but that can alternatively be represented as $\frac{1}{2} n(n+1)$. So:

$$
\sum_{i=1}^{n} i=\frac{1}{2} n(n+1)
$$

3 Finite Geometric Sequences

$$
\sum_{i=0}^{n} r^{i}=\frac{1-r^{n+1}}{1-r}=\frac{r^{n+1}-1}{r-1}
$$

The second representation is derived by multiplying the first by -1 . The former is more convenient where $-1 \leq r \leq 1$ and the latter for other values of r. Combined with 1, we can see that:

$$
\sum_{i=0}^{n} a r^{i}=a\left(\frac{1-r^{n+1}}{1-r}\right)=a\left(\frac{r^{n+1}-1}{r-1}\right)
$$

4 Another Type of Sequence

For a sequence $x_{i}(i=1,2, \ldots)$ where a and b are constants:

$$
\sum_{i=1}^{n} a+b x_{i}=a n+b \sum_{i=1}^{n} x_{i}
$$

Which can be further generalised for sequences beginning at m :

$$
\sum_{i=m}^{n} a+b x_{i}=a(n-m+1)+b \sum_{i=m}^{n} x_{i}
$$

