\documentclass[a4paper]{article} \usepackage{amssymb,amsmath} \usepackage{gensymb} \newcommand{\abs}[1]{\lvert#1\rvert} \newcommand{\norm}[1]{\lVert#1\rVert} \begin{document} \title{Cheat Sheet 2: Sine Rule and Cosine Rule} \author{Simon Harris} \date{\today} \maketitle \section{The Sine Rule} For any triangle, given the sides $a$, $b$ and $c$ and their corresponding opposite angles $A$, $B$ and $C$: \begin{equation*} \frac{sin\ A}{a} = \frac{sin\ B}{b} = \frac{sin\ C}{c} \end{equation*} \begin{equation*} \frac{a}{sin\ A} = \frac{b}{sin\ B} = \frac{c}{sin\ C} \end{equation*} So, given two sides and a corresponding angle, or two angles and a corresponding side, the triangle can be solved. \section{The Cosine Rule} Given two sides plus the angle between them:\footnote{This is a generalisation of Pythagoras' Theorem, to which it reduces if the angle is 90\degree} \begin{align*} a^{2} =& \ b^{2} + c^{2} - 2bc\ cos\ A\\ b^{2} =& \ c^{2} + a^{2} - 2ca\ cos\ B\\ c^{2} =& \ a^{2} + b^{2} - 2ab\ cos\ C \end{align*} Given 3 sides but no angle, this form is more convenient: \begin{equation*} cos\ A = \frac{b^{2} + c^{2} - a^{2}}{2bc},\ cos\ B = \frac{c^{2} + a^{2} - b^{2}}{2ca},\ cos\ C = \frac{a^{2} + b^{2} - c^{2}}{2ab} \end{equation*} \section{The General Component Form} For converting a vector from geometric to component form: \begin{equation*} \textbf{a} = \abs{\textbf{a}}\ cos\ \theta\textbf{i} + \abs{\textbf{a}}\ sin\ \theta\textbf{j} \end{equation*} \end{document}